Advanced Computer Architecture CMSC 611 Homework 5

Due in class at 1.05pm, Nov 21st, 2012

(If you wish to **go green**, then you can submit the entire Homework electronically. Make sure you include the string "CMSC 611 Homework" in your subject line. You will get a canned response immediately if your message is filtered correctly! I use an exact substring match for the filter so make sure you include the exact string in your subject line. Deadline remains the same)

Please **DO NOT** email your homework to Dr. Olano!! **DO NOT** include him in the CC either!! There is a strong chance it won't be graded if you do!! **Send it only to <abhay1@umbc.edu>**

1) For this problem, you should assume the following:

(30 points)

- 1. Pages are 4 KB
- 2. There is a 4-entry, fully-associative TLB
- 3. The TLB uses a true, least-recently-used replacement policy

For the pattern of virtual addresses shown below, comment on whether the entry is:

- a. Found in the TLB
- b. Not found in the TLB but is found in the Page Table
- c. Not found in the TLB or the Page Table (thus, there is a page fault)

The initial TLB and page table state is shown below.

If there is a page fault, and you need to replace a page from disk, assume the page number is one higher than the current highest page in the page table. (This is currently $1100_2 / 12_{10}$. Thus, the next page would be $1101_{(2)} / 13_{(10)}$, the next would be $1110_{(2)} / 14_{(10)}$, etc.)

Stream of Virtual Addresses:

	MSB			LSB
1	0000	1111	1111	1111
2	0111	1010	0010	1000
3	0011	1101	1010	1101
4	0011	1010	1001	1000
5	0001	1100	0001	1001
6	0001	0000	0000	0000
7	0010	0010	1101	0000

Initial TLB State:

(Note that '1' = "Most Recently Used and '4' = "Least Recently Used")

Valid	LRU	Tag	Physical Page #
1	3	1011	1100
1	2	0111	0100
1	1	1001	0110
0	4	0000	

<u>Initial Page Table State:</u>

	Valid	Physical Page #
0000	1	0101
0001	0 (1)	Disk (1101)
0010	0 (1)	Disk (1110)
0011	1	0001
0100	1	1001
0101	1	1011
0110	0	Disk
0111	1	0100
1000	0	Disk
1001	0	Disk
1010	1	0011
1011	1	1100

Question A (15 points)

Given the virtual addresses above, show how the state of the TLB changes by filling in the tables:

Address 1:

1	0000	1111	1111	1111
	tar t			

Valid	LRU	Tag	Physical Page #
1	4	1011	1100
1	3	0111	0100
1	2	1001	0110
1	1	0000	0101

This reference is a: TLB miss, Page table hit

Address 2:

	0111	1010		
2	0111	1010	0010	1000

Valid	LRU	Tag	Physical Page #
1	4	1011	1100
1	1	0111	0100
1	3	1001	0110
1	2	0000	0101

This reference is a: TLB hit.

y y y y y

Address 3:

3	0011	1101	1010	1101
---	------	------	------	------

Valid	LRU	Tag	Physical Page #
1	1	0011	0001
1	2	0111	0100
1	4	1001	0110
1	3	0000	0101

This reference is a: TLB miss, Page table hit

Address 4:

1 4 1 ()	011 1010	1001	1000
----------	----------	------	------

Valid	LRU	Tag	Physical Page #
1	1	0011	0001
1	2	0111	0100
1	4	1001	0110
1	3	0000	0101

This reference is a: TLB hit

Address 5:

5	0001	1100	0001	1001
3	0001	1100	0001	1001

Valid	LRU	Tag	Physical Page #
1	2	0011	0001
1	3	0111	0100
1	1	0001	1101
1	4	0000	0101

This reference is a: Page fault

Address 6:

6 0001 0000 0000 0000

v v v v v

Valid	LRU	Tag	Physical Page #
1	2	0011	0001
1	3	0111	0100
1	1	0001	1101
1	4	0000	0101

This reference is a: TLB hit

Address 7:

7 0010 0010 1101 0000

Valid	LRU	Tag	Physical Page #
1	3	0011	0001
1	4	0111	0100
1	2	0001	1101
1	1	0010	1110

This reference is a: Page fault

Question B: (10 points)

What would some of the advantages of having a larger page size be? What are some of the disadvantages?

Advantage – Less Page faults, Smaller page tables

Disadvantage – Larger Page size => more fragment, Longer disk transfer, More page faults if no locality.

Question C: (5 points)

Given the parameters in the table above, calculate the total page table size for a system running 5 applications.

Virtual Address Size	Page Size	Page Table Entry Size
64 bits	16 KB	8 bytes

Page size = $16KB = 2^{14}$

Page table entry size = 2^3

So number of bits = 64 - 14 = 50. i.e. 2^{50} page table entries each with 8 bytes. So Page table size = 2^{53} and for 5 applications, total page table size = $5 * 2^{53}$

Hence Inverted tables are used.

SIMPLE SCALAR SIMULATOR

(70 points)

Answers vary.